Yunqi He

Email: yunqi.he@u.northwestern.edu http://actasclown.github.io Mobile: +1-773-290-0801

Education

Northwestern University

Evanston, IL

Ph.D. in Computer Engineering, advised by Prof. Hai Zhou

Jan. 2022 - Jun. 2026(estimated)

Northwestern University

Evanston, IL

M.S. in Computer Engineering

Sept. 2019 - Dec. 2021

Peking University

Beijing, China

B.S. in Computer Science

Sept. 2013 - Jun. 2017

Research Interest

Machine Learning Systems: Designing and verifying reliable ML systems, with emphasis on robustness verification and security for various kinds of deep neural networks

Multimodal Learning: Developing robust architectures for integrating multiple data modalities (vision, text, metadata) with a particular focus on probabilistic frameworks and Bayesian methods

Relevant Coursework

AI & ML Cores: Machine Learning, Artificial Intelligence, Probability Theory & Statistics, Random Processes Computing: Massively Parallel Prog w/CUDA, Multicore Concurrent Programming, Design & Analysis of Algorithms Applications: Information Retrieval, Biometrics, Human-Computer Interaction Math Foundations: Linear Algebra, Set Theory & Graph Theory, Algebraic Structure & Combinatorial Mathematics

Selected Projects (M- Machine Learning | H- Hardware Design | F- Formal Verification)

Multimodal Automatic Skin Disease Diagnosis [1] [2] | Northwestern University May. 2021 - June. 2024

- Developed an innovative multimodal Bayesian network architecture integrating deep learning with clinical metadata for skin disease diagnosis.
- Optimized network topology through semantic analysis, achieving efficient node distribution and connection reduction.
- Implemented a two-stage training pipeline for seamless integration of neural networks and Bayesian networks.
- Achieved 19.3% improvement in diagnostic accuracy compared to pure deep learning methods on PAD-UFES-20 and SkinCon benchmark datasets.

MF Robustness Verification for Deep Neural Networks [3] [4] | Northwestern University

Feb. 2023 - Present

- Proposed a systematic I/O attack combining algebraic and learning-based approaches on DNNs protected by a logic locking scheme.
- Utilized probabilistic methods, abstract interpretation, and abstraction refinement to find adversarial examples or to certify the robustness of DNNs.
- Contribution: Designed the learning-based attack.
- Ongoing work: Conducting attack and defense research on logical encryption for more complex models including Transformer, Diffusion, etc., to provide a theoretical basis for applications such as protecting private LLM parameters.

F Principles of Symbolic Model Checking [5] | Northwestern University

Mar. 2022 - Nov. 2022

- Model checking verifies whether a model satisfies the designated safety and liveness properties.
- Proposed an efficient algorithm to check whether two systems are modulo equivalent for arbitrary timing differences.
- Developed a tool to check the correctness of design transformations such as high-level synthesis and RTL optimization.
- Contribution: Designed and conducted experiments to compare our tool with existing commercial tools, including Cadence Jasper SEC, Mentor Catapult SLEC, and Synopsys Hector.

HF Hardware IP Protection via Logic Encryption [6] [7] | Northwestern University

- Logic encryption embeds binary keys to integrated circuits to protect intellectual properties and thwart attacks.
- Employed logic synthesis and obfuscation to achieve indistinguishable encryption and to minimize the overheads.
- Utilized a behavioral model to launch oracle-guided I/O attacks on logic encryption.
- Contribution: Verified the obfuscation in aig level. Evaluated the overhead of our approach using Innovus and Genus.
- Ongoing work: Designing a new eFPGA redaction solution to make industrial applications of logics locking possible.

H GRT Sensing v1.0 | Peking University

- June, 2017 Jan, 2018
- Modified the code of GRT 2.0(an FPGA-based software defined radio Platform) to derive an additional status output from the $rx_channel_estimation$ module of the physical layer and export CSI.
- Wrote a serial port receiving program for the exported output to visually display the changes in CSI near the antenna in real time, laying the foundation for wireless perception.

^{MH} FPGA-based CNN Accelerator | Peking University

April, 2016

- Mapped the specific calculation process of neural network to FPGA hardware with Xilinx Vivado HLS tool.
- Made use of compiler instructions to perform array partition and loop unrolling on the calculation process to significantly improve the calculation speed of the generated hardware.

Work Experience

Cadence Design Systems | Research & Development Intern

Jun. 2024 - Sept. 2024

- Participated in the next generation development of the company's star product Palladium emulator.
- Researched GPU-accelerated circuit placement algorithms and improved them based on actual industrial benchmarks.
- Tried to replace the classic algorithms of existing products and provide an order of magnitude of compile time boost.

Beijing Yidian Science and Technology Co., Ltd | Project Manager

Oct. 2017 - June. 2019

- Participated in the preparation of a start-up company.
- Participated in the design of a multi-sided platform to connect online diagnosis and treatment and offline resources
- Completed functions of online inquiry, hospital searching, online registration, and after-treatment services

Technical Skills

Languages: Python, C/C++, Java, CUDA, Verilog/VHDL, MySQL, Assembly, Rust

Tools: Linux, AWS, PyTorch, Tensorflow, Matlab

Teaching Assistant: Fundamentals of Blockchains and Decentralization (Fall 2021), Fundamentals of Computer System Software (Winter 2023), Advanced Digital Design (Spring 2023), Introduction to Computer Engineering (Winter 2024)

Awards

- Northwestern University Ph.D. Fellowship (2022)
- "Excellent Graduation Design" (top 5%) of EECS Department, Peking University (2017)
- 3rd Prize, ACM Programming Contest of Peking University (2015)

Publications

- [1] Yunqi He, Jiahe Liu, Linglong Cai, Taimei Cui, You Li, and Hai Zhou. Multimodal bayesian networks for automatic skin disease diagnosis. In *International Conference on Bioinformatics and Biomedicine (BIBM)*. IEEE, 2024.
- [2] **Yunqi He**, Linglong Cai, Taimei Cui, You Li, and Hai Zhou. A combination of dnn and bn for automatic skin disease diagnosis. In *International Symposium on Biomedical Imaging (ISBI)*. IEEE, 2023.
- [3] You Li, Guannan Zhao, **Yunqi He**, and Hai Zhou. Evaluating the security of logic locking on deep neural networks. In *Design Automation Conference (DAC)*. ACM/IEEE, 2024.
- [4] You Li, Guannan Zhao, **Yunqi He**, and Hai Zhou. Certifying global robustness for deep neural networks. arXiv preprint arXiv:2405.20556, 2024.
- [5] You Li, Guannan Zhao, **Yunqi He**, and Hai Zhou. Se3: Sequential equivalence checking for non-cycle-accurate design transformations. In *Design Automation Conference (DAC)*. ACM/IEEE, 2023.
- [6] You Li, Guannan Zhao, **Yunqi He**, and Hai Zhou. De2: Sat-based sequential logic decryption with a functional description. In *Design*, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2025.
- [7] You Li, Guannan Zhao, **Yunqi He**, and Hai Zhou. Obfuslock: An efficient obfuscated locking framework for circuit ip protection. In *Design*, *Automation & Test in Europe Conference & Exhibition (DATE)*. IEEE, 2023.